NORTH MAHARASHTRA UNIVERSITY
JALGAON (M.S.)

MASTER OF ENGINEERING

M.E. (MECHANICAL)

WITH SPECIALIZATION IN

COMPUTER AIDED ANALYSIS AND DESIGN

(W.E.F. 2011 – 2012)
M.E. MECHANICAL ENGINEERING - COMPUTER AIDED ANALYSIS & DESIGN (CAAD)

(W.E.F: 2011 – 12)

SYLLABUS STRUCTURE:

FIRST YEAR: TERM – I

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Subject Name</th>
<th>Teaching Scheme per Week</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Finite Element Analysis</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Computer Aided Design</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Machine Design</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Mechanical Vibration</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Elective – I</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Laboratory Practice - I</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Seminar - I</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Grand Total</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
FIRST YEAR: TERM –II

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject Name</th>
<th>Teaching Scheme per Week</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Optimization Techniques</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>System Dynamics & Simulation</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Design of Experiments & Analysis</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Design & synthesis of Mechanism</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Elective - II</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Laboratory Practice- II</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Seminar - II</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Grand Total</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Elective – I</th>
<th>Sr. No</th>
<th>Elective – II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design of Pressure Vessel</td>
<td>1</td>
<td>Design for Manufacturing & Assembly</td>
</tr>
<tr>
<td>2</td>
<td>Computer Aided Engineering</td>
<td>2</td>
<td>Machine tool Design</td>
</tr>
<tr>
<td>3</td>
<td>Tribology</td>
<td>3</td>
<td>Computational Fluid Dynamics</td>
</tr>
</tbody>
</table>
SECOND YEAR: TERM –I

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Subject Name</th>
<th>Teaching Scheme per Week</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Seminar – III</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Project Stage - I</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Grand Total</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

SECOND YEAR: TERM –II

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Subject Name</th>
<th>Teaching Scheme per week</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Progress Seminar</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Project Stage-II</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Grand Total</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

L – Lectures per week
P – Practical per week
TW – Term Work Maximum Marks
PR – Practical Maximum Marks
OR – Oral Maximum Marks
SYLLABUS FOR THE COURSE:

M.E. MECHANICAL - COMPUTER AIDED ANALYSIS & DESIGN (CAAD)

FIRST YEAR (TERM – I)

FINITE ELEMENT ANALYSIS
(Common with M.E. Mechanical (General))

Teaching Scheme
Scheme:
Lectures: 3 Hrs per week

Examination
Paper: 100 Marks
Paper Duration: 3 Hrs.

Fundamental concept of finite element method
Introduction, Historical Background, Stress and equilibrium, Boundary conditions, Strain Displacement relations, Stress strain relations, Temperature effects, Potential Energy and equilibrium, Rayleigh-Ritz Method, Galerkin’s Method, Saint Venant’s Principle, von Mises Stress, Computer Programs

One –Dimensional problems

Trusses
Introduction, Plane Trusses, Three-Diamensional Trusses, Assembly of Global Stiffness Matrix for the Banded and Skyline solutions

Two-dimensional problems using constant strain triangles
Introduction, Finite Element Modeling, Constant-Strain Triangle, Problem Modeling and Boundary Conditions, Orthotropic Materials

Axis symmetric solids subjected to axis symmetric loading
Introduction, Axis symmetric Formulation, Finite Element Modeling: Triangular Element, Problem Modeling and Boundary Conditions
Two-dimensional isoparametric elements and numerical integration

Beams and frames
Introduction, Finite Element Formulation, Load Vector, Boundary Considerations, Shear Force and Bending Moment, Beams on Elastic Supports, Plane Frames, Three-Dimensional Frames, Some Components

Three-dimensional problems in stress analysis
Introduction, Finite Element Formulation, Stress Calculation, Mesh Preparation, Hexahedral Elements, and Higher Order Elements, Problem Modeling, Frontal Method for Finite Element Matrices

Scalar field problems
Dynamic considerations
Introduction, Formulation, Element Mass Matrices, Evaluation of Eigen values and Eigenvectors, Interfacing with Previous Finite Element Programs and a Program for Determining Critical Speed of Shafts, Guyan Reduction, Rigid Body Modes

Reference Books:

1) J.N. Reddy, an Introduction to Nonlinear Finite Element Analysis, OUP.
2) C.S.Krishnamoorthy.,Finite element analysis TMH
4) Robert Cook, Concept an application of Finite element analysis
5) Klaus-Jurgen Bate, finite element analysis, PHI
6) C.S. Desai and J.F.Abel.,Introduction to finite element methods ,CBS
7) Tirapatı R. Chandrupatla and Belegundu, Finite element analysis by, PHI.
9) Kenneth Lt. Huebner,” The FEM for Engineers”, Wiley India Pvt.Ltd. New Delhi

(* Question Paper- 50% to 60% of marks are kept for the quantitative questions)
COMPUTER AIDED DESIGN

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

BASICS OF CAD
Fundamentals of CAD, Phase of CAD, benefits, applications, Display techniques, Hardware and software of CAD, programming and tools in CAD

COMPUTER GRAPHICS
Role of computer graphics in CAD / CAM, Fundamentals of 2-D graphics, Menu design and graphical user interfaces, graphic elements, raster scan technique, LED Liquid Crystal Display, Graphic elements drawing, algorithms for line, circle, ellipse, arc, rectangle etc. Drawing of 2-D elements, filling of object, programming methods, Transformation in 2-D as scaling, rotation, rotation about any point, scaling about any point, orthographic projection and drawing of 2-D elements.

MODELLING IN 3-D
Translation, mirror and shear, transformation in 3-D as scaling, translation and rotation, mirror, shear, isometric, oblique and perspective projection method. Surface, wire frame and solid modeling, B-rep, CSG and Hybrid modeling Planer and space curve design, analytical and synthetic approaches, surface of revolution, Sweep surfaces, ruled and developed surfaces, Benzier and B-spline curves and surface.

DESIGN OF MACHINE
Component Application for design of vehicle components and mathematical modeling with program on design problems like shaft, axles, gear, spring, brake, clutch etc.

OPTIMIZATION
Implementation, techniques for reducing weight and cost of the components using computer program.

THERMAL SYSTEM DESIGN
Application of CAD for design of thermal system like heat exchanger, furnaces design etc.

NUMERICAL METHODS
Modeling and Programming Gauss elimination method, numerical integration, finite differences, curve fitting, Newton Raphson technique

Reference Books:-

1. Krishnamurthy, Computer Aided Design
2. M. P. Groover and Zimmer, CAD-CAM
3. I. Zeid, CAD-CAM and Automation
4. Khandare, Computer Aided Design
5. A. Ravindra, K. M. Ragesdell, G. V. Reklaitis, Engineering Optimization – Methods and Application, Willey India Publications
6. Chapra Canale, Numerical Methods for Engineers
MACHINE DESIGN

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

INTRODUCTION
Review of failure theories; their scope of applications under different loading and environmental conditions; Hertzian contact stresses and their effect on load carrying capacities of members; effect of small inelastic strains and residual stresses on load carrying capacity; theory of limit design; Machinery construction principles.

DESIGNING AGAINST FRACTURE
Linear elastic fracture mechanics approach; theories of brittle fracture; fundamental aspects of crack growth and fractures; use of fracture in design

DESIGNING AGAINST FATIGUE AND CREEP
Causes and interpretation of failures, influence of various factors; low cycle and high cycle fatigue; cumulative damage theories; acoustical and thermal fatigue; corrosion and fretting fatigue; pitting of gears; fatigue strength of joints, components and structures; creep behavior; the mechanical equation of state; an elastic and plastic creep; rupture theory; analysis of tensile creep data, creep in high temperature low cycle fatigue; creep analysis of thick walled cylinders and rotating discs.

DESIGN FOR RELIABILITY
Application of statistics to material properties; fatigue and reliability, early chance and wear out failures; reliability prediction against chance and wear out failures; probabilistic approach to design and its comparison with safety factor approach; reliability prediction of series, parallel and stand by systems.

COMPOSITE MATERIALS:-
Composite materials and structures, classical lamination theory, elastic stress analysis of composite material, Fatigue strength improvement techniques, stresses , stress concentration around cutouts in composite laminates, stability of composite laminate plates and shells, Hybrid materials, applications.

DESIGN TECHNIQUES

Reference Books

4 Bazovsky, I., Reliability Theory & Practice, Courier Dover Publications. 2004
5 Haugen, E.B., Probabilistic Approach Design, John Wiley. 1968
MECHANICAL VIBRATION
(Common with M.E. Mechanical (General))

Teaching Scheme
Lectures: 3 Hrs per week

Examination
Paper: 100 Marks
Paper Duration: 3 Hrs.

1. **(A) Multi Degree Freedom System**:-

(B) Multi Degree System Numerical Methods:-

2. **Continuous System**:
Vibrations of String, Bars, Shafts and beams, free and forced vibration of continuous systems.

3. **Transient vibrations**:
Response of a single degree of freedom system to step and any arbitrary excitation, convolution (Duhamel’s) integral, impulse response functions.

4. **Vibration Control**:
Balancing of rotating machine, In-situ balancing of rotors, control of natural frequency introduction of damping, vibration isolation & vibration absorbers.

5. **Vibration Measurement**:
FFT analyzer, vibration exciters, signal analysis. Time domain & Frequency domain analysis of signals. Experimental modal analysis, Machine Conditioning and Monitoring, fault diagnosis. Example of Vibration tests - Industrial case studies

6. **Random Vibrations**:
Expected values auto and cross correlation function, Spectral density, response of linear systems, analysis of narrow band systems.

7. **Non Linear Vibrations**:
Systems with non-linear elastic properties, free vibrations of system with non-linear elasticity and damping, phase-plane technique, Duffing’s equation, jump phenomenon, Limit cycle, perturbation method.

8. **Noise and Its Measurement**:
Sound waves, governing equation its propagation, Fundamentals of Noise , Decibel, Sound Pressure level, Sound Intensity, Sound fields, reflection, absorption and transmission .Noise measurement , Sound meter , Allowed exposure levels and time
limit by B.I.S., Octave Band analysis of sound, Fundamentals of Noise control, source control, path control, enclosures, noise absorbers, noise control at receiver.

Reference Books

1. Theory of Vibrations with Applications: W T Thomson CBS Publishers Delhi
5. Mechanical Vibrations A H Church, John Wiley & Sons Inc
10. C. Sujatha “Vibration & Acoustics” TMH New Delhi
DESIGN OF PRESSURE VESSEL (Elective – I)
(Common with M.E. (Machine Design))

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

INTRODUCTION

Revision of stress and strain in thick and thin cylinder and pressure vessel. Criteria in vessel design, excessive elastic deformation, plastic instability, brittle, rupture, creep Design of pressure vessel, internal pressure, construction feature, code, design of shell, types of heads, thickness of heads.

Design of storage vessel, storage of non volatile liquids and gases, code for storage, bottom and shell design Design of vessel under external pressure, vacuum stress analysis, stiffness, design of circumferential stiffeners, design of covers, pipes and tubing Design of High Pressure Vessel, autoclave Support for vessel, types, leg support skirt, support design.

Reference Books:

1) Process Equipment Design by N.V. Joshi
2) Process equipment design by L.E.Browr, E.H.Yovng
3) Introduction to process Equipment Design by B.C. Bhattacharya
4) Pressure Vessel Design Manual by Dennis Moss, Elsevier
5) Theory and Design of Pressure Vessels by John F. Harvey, P. E., CBS Publication
COMPUTER AIDED ENGINEERING (Elective – I)

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

INTRODUCTION TO CUSTOMIZATION
Customization, Application Programming Interface (API), macros, scripts.

TOOLS FOR CUSTOMIZATION
Object Oriented Programming (OOP), OLE interfaces in CAD/CAM software, Use of general programming interfaces like VB, VBS, VC++, OpenGL programming and System dependent programming interfaces like, Visual LISP (AutoCAD), GRIP (Uni-graphics), Pro-Programming (Pro-Engineer), CATIA etc.

COMPUTER-BASED SYSTEM ENGINEERING
System engineering process, Software product development life cycle, software processes, software development project management, software prototyping

RAPID DEVELOPMENT
Core issues in rapid development, rapid development languages, life cycle planning and customer oriented development

SOLID MODELING ALGORITHMS
Euler operations, basic solid modeling algorithms

AUTOMATED SOLID MODELING USING CUSTOMIZATION
Creating 2D, 3D and solid entities through API, Editing 2D, 3D and solid entities through API, Design and development of user interfaces- icons, menus, dialog boxes, integrating databases with CAD, creating bill of material or parts list, automated assembly modeling through customization, automated drafting and dimensioning using customization, creating automated animations using API and animation software.

Reference Books:
1. Rapid Development,- Steve McConnel, Microsoft Press
2. Software Engineering – Ian Sommerville, Pearson Education
4. Open GL Programming Guide – Mason Woo et al,
5. Advanced AutoCAD – George Omura
6. Customizing AutoCAD – Shyam Tickoo, Thomson Learning
7. CATIA - Shyam Tickoo, Thomson Learning
8. Solid Modelling – Martti Mantilya, Computer Science Press
9. Solid Works API Using VB and C++ - Custom Programming Unlimited LLC
10. GRIP Programming Manuals for Unigraphics – Vol. I & II
12. User Manuals for CATIA
TRIBOLOGY (Elective-I)
(Common with M.E. (Machine Design))

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

FRICTION & WEAR
Types of wear, theories of friction & wear, dry friction & boundary friction

VISCOSITY
Petroff’s law, Hagen Poisenille law, variation of viscosity,

HYDRODYNAMIC LUBRICATION
Reynold’s Eq. Solution for short & long finite bearing, load carrying capacity, flow rate, hydrodynamic thrust bearing, behaviour under variable load, squeeze film, thermal equilibrium of sliding system, elasto hydrodynamic lubrication

HYDROSTATIC LUBRICATION
Pressure distribution in hydrostatic thrust bearing, pumping power & capacity, hydrostatic formal & thrust bearing

GAS LUBRICATION
Merits & Demerits, aerodynamic and aerostatic journal bearing, Reynolds equation

Reference Books:
1) Principles of tribology by J.Hamrock
2) Tribology in machine Design by T A solarski
3) Principles of Tribology by J.Hasting
LABORATORY PRACTICE - I

Exam Scheme:
Practical’s – 06 hours/week.

Term-work – 100 marks
Oral- 50 marks

Experiments/Assignments based on
Any Three subjects for Experimental work and two subjects for Assignments

1) Computer Aided Design
2) Machine Design
3) Mechanical Vibration
4) Finite Element Analysis
5) Elective-I

For those subject lab. practice is not given for that, the concerned subject in-charge should frame minimum of four laboratory Experiments /Assignments..

Note: Oral will be based on the prescribed term-work presented in the form of certified journal.
SEMINAR-I

Practical’s – 04 hours/week. Term-work – 100 marks

Seminar-I should be based on the literature survey on any topic relevant to CAAD Engineering. It may be leading to selection of a suitable topic of dissertation. Each student has to prepare a write-up of about 25 pages.

The report typed on A4 sized sheets and bound in the necessary format should be submitted after approved by the guide and endorsement of the Head of Department. The student has to deliver a seminar talk in front of the teachers of the department and his classmates. The Guide based on the quality of work and preparation and understanding of the candidate shall do an assessment of the seminar.

The report copies must be duly signed by the guide and Head of department (one copy for institute, one copy for guide and one copy for the candidate for certification). Attendance of all students for all seminars is compulsory.
FIRST YEAR (TERM – II)

DESIGN OF EXPERIMENTS & ANALYSIS

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

INTRODUCTION
Defining Research, Scientific Enquiry, Hypothesis, Scientific Method, Types of Research, Research Process and steps in it. Research Proposals – Types, contents, sponsoring agent’s requirements, Ethical, Training, Cooperation and Legal aspects

RESEARCH DESIGN
Meaning, Need, Concepts related to it, categories; Literature Survey and Review, Dimensions and issues of Research Design, Research Design Process – Selection of type of research, Measurement and measurement techniques, Selection of Sample, Selection of Data Collection Procedures, Selection of Methods of Analysis, Errors in Research.

RESEARCH PROBLEM

RESEARCH MODELLING

EXPERIMENTATION
Objective, Strategies, Factorial Experimental Design, Applications of Experimental Design, Basic Principles – Replication, Randomization and Blocking, Guidelines for designing experiments; Laboratory Experiments, Methods of manipulating Variables, Errors in Experiments, Steps in Design of Experiments, Basis

PROCESS OPTIMIZATION
Factorial Design principles, two factor Factorial Design, General Factorial Design, Fitting response Curves and Surfaces, Blocking, Taguchi Approach to Parameter Design, Robust Design
ANALYSIS
Analysis of Variance and Co-variance, Hypothesis Testing – Parametric and Non-Parametric Tests, Uni-variate and Bi-variate analysis

REPORT WRITING
Pre-writing Considerations, Principles of Thesis Writing, Format of Report Writing, Format of Publication in Research Journals, Oral Presentations (Briefing)

Reference Books

OPTIMIZATION TECHNIQUES
(Common with M.E. Mechanical (General))

Teaching Scheme
Scheme:
Lectures: 3 Hrs per week

Examination
Paper: 100 Marks
Paper Duration: 3 Hrs.

Introduction to Optimization: Engineering applications of optimization, statement of optimization problem, classification of optimization problem

Classical Optimization Techniques: Introduction, single variable optimization, multi variable optimization with no constraint, equality constraint, in equality constraint, convex programming problems

Linear programming: Standard form of linear programming, geometry of linear programming, solutions of system of linear simultaneous equations, pivotal reduction of general system of reduction and simplex algorithms

Non-linear programming: One dimensional Minimization methods, elimination methods, unrestricted search, exhaustive search, half interval method, golden section method, Interpolation methods, Newton method, Quasi Newton method, secant method

Non-linear programming (Unconstrained optimization techniques): Direct search method, random search method, grid search method, Powell’s method, Simplex method. Indirect Search method, gradient of functions, descant method, conjugate gradient method, Newton’s method, Quasi Newton method

Non-linear programming (Constrained Optimization): Direct methods, random search method, complex method, sequential linear programming, sequential quadratic programming and generalized reduced gradient method, Indirect method- Penalty function methods

Reference Books:

3. Practical Methods of optimization, Fletcher, R., John Wiley

ME (CAAD) Syllabus NMU Jalgaon w.e.f (2011-12)
Page 20
SYSTEM DYNAMICS AND SIMULATION

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

SYSTEM DYNAMICS

SIMULATION

Text Books

Reference Books:
DESIGN & SYNTHESIS OF MECHANISM
(Common with M.E. (Machine Design))

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

Kinematics analysis of planer mechanism, graphical & analytical methods of velocity & acceleration analysis. Curvature Theorem, fixed & moving centroids, inflection circle, Euler Savary equation, Bobillier construction, cubic & stationary curvature, dwell mechanism Kinematic synthesis,

Dimensional synthesis, function generation, path generation, accuracy point, Chebychev spacing, graphical synthesis for function generation with two, three, four accuracy points, Bermester points Analytical Synthesis of four bar and slider crank mechanism, Frendenstein equation.

Coupler Curves: - Equation of coupler curves, Robber Chebychev theorem, kinematics analysis of spatial mechanism, Denavit Hartenberg parameters, matrix method.

Reference Books:

1) Design of Machaniry- An introduction to synthesis & analysis of mechanics & machines by R.L.Norton
2) Mechanism Design - Analysis & synthesis by A.G.Edman & G.N.Sandor
3) Theory of Mechanics & Mechanism by J.E.Shigley & J.J.Ucker
DESIGN FOR MANUFACTURE AND ASSEMBLY (Elective – II)
(Common with M.E. (Machine Design))

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

Life cycle of mechanical equipment design, Requirement of life cycle personnel like customer, management, marketing, manufacturing, transportation etc. Need to meet constraints of manufacturing, Advantages of designing for manufacturing and assembly to improve product quality, cost and time to market,

Design for manufacture & assembly (DFMA) strategies, DFMA application and case studies, product design for manual assembly,

Design for high speed automatic & robot assembly, design for machining, design for injection moulding, die casting and powder metal processing, Design for sheet metal for mechanical system design.

Reference Books:

1) Process and Design for manufacturing by Sherif D EL Wakil
2) Manufacturing, Planning and control systems by Thomas E Vollmann, Willam L Beroy
3) Automation, Production System and Computer Integrated Manufacturing by Mikell P Groover.
MACHINE TOOL DESIGN (Elective-II)
(Common with M.E. (Machine Design))

Teaching Scheme
Lectures: 3 Hrs Per week

Examination Scheme
Paper: 100 Marks
Duration: 3 Hrs

Introduction, trends in machine tool design, design specification, working principle, Kinematics of machine tool, different drives, cutting speeds, gear boxes, ray diagram, Force analysis, forces for different machining operation, design of beds, columns, tables, support, rigidity consideration, Vibration in machine tool, vibration of column beds, vibration damping, Design of side ways & guide ways, types of guide, pressure distribution, wear, accuracy, lubrication.

Design of power screws, design features, strength, rigidity, efficiency, backlash, Design of spindles, balancing of spindles, strength & wear resistance, CNC machine tool, CAD/CAM system, programming.

Reference Books:
1) Machine tool design by N.K.Mehta
2) Design principles of metal cutting—machine tool by F Koenigs Berger
COMPUTATIONAL FLUID DYNAMICS (Elective-II)
(Common with M.E. Mechanical (General))

Teaching Scheme
Lectures: 3 Hrs per week

Examination
Paper: 100

Paper Duration: 3 Hrs.

Review of Governing Equations Fluid Flow and Heat Transfer
Solution of Viscous Incompressible Flows by Stream Function -Vorticity Formulation
Two Dimensional Incompressible Viscous Flow, Incorporation of Upwind Scheme, Estimation of Discretization Error, Application to Curvilinear Geometries, Derivation of Surface Pressure and Drag.
Solution of Navier -Stokes Equations for Incompressible Flows Using MAC and SIMPLE Algorithms
Introduction to FVM: Integral Approach, discretization & Higher order scheme

Reference Books:
LABORATORY PRACTICE – II

Exam Scheme:
Practical’s – 06 hours/week.

Term-work – 100 marks
Oral- 50 marks

Experiments/Assignments based on
Any Three subjects for Experimental work and two subjects for Assignments

1. Optimization Techniques
2. System Dynamics & Simulation
3. Design of Experiment & Analysis
4. Design & synthesis of Mechanisms
5. Elective -II

For those subject lab. practice is not given for that, the concerned subject in-charge should frame minimum of four laboratory Experiments / Assignments.

Note: Oral will be based on the prescribed term-work presented in the form of certified journal.
SEMIMAR-II

Exam Scheme:
Practical’s – 06 hours/week. Term-work – 100 marks

Se미나리-II should be based on the literature survey on any topic relevant to CCAD. It may be leading to selection of a suitable topic of dissertation. Each student has to prepare a write-up of about 25 pages.

The report typed on A4 sized sheets and bound in the necessary format should be submitted after approved by the guide and endorsement of the Head of Department. The student has to deliver a seminar talk in front of the teachers of the department and his classmates. The Guide based on the quality of work and preparation and understanding of the candidate shall do an assessment of the seminar.

The report copies must be duly signed by the guide and Head of department (one copy for institute, one copy for guide and one copy for the candidate for certification). Attendance of all students for all seminars is compulsory.
SEMINAR-III

Exam Scheme:
Practical's – 04 hours/week.

<table>
<thead>
<tr>
<th>Term-work</th>
<th>Oral</th>
<th>50 marks</th>
</tr>
</thead>
</table>

Seminar - III should be based on the literature survey on any topic relevant to Design Engineering. It may be leading to selection of a suitable topic of dissertation. The report shall contain some contribution by the candidate in the form of experimental results, deductions, compilation and inferences etc. Each student has to prepare a write-up of about 25 pages. The report typed on A4 sized sheets and bound in the necessary format should be submitted after approved by the guide and endorsement of the Head of Department. The student has to deliver a seminar talk in front of the teachers of the department and his classmates. The Guide based on the quality of work and preparation and understanding of the candidate shall do an assessment of the seminar.

The report copies must be duly signed by the guide and Head of department (one copy for institute, one copy for guide and one copy for the candidate for certification). Attendance of all students for all seminars is compulsory.

PROJECT STAGE – I

Exam Scheme:
Practical’s – 18 hours/week.

<table>
<thead>
<tr>
<th>Term-work</th>
<th>100 marks</th>
</tr>
</thead>
</table>

The candidate shall submit the synopsis of the dissertation work to the evaluation committee at the starting of FIRST YEAR TERM III. It shall include the problem definition, literature survey, approaches for handling the problem, finalizing the methodology for the dissertation work and design calculations / experimental design etc.

A report of the work shall be submitted at the end of Semester III after approval by the Guide and endorsement of the Head of Department. It will be assessed for term work, by the evaluation committee appointed by the Head of the Department, for appropriateness, sufficiency of contents and offer suggestions if any. The candidate shall prepare a report of about 50 pages. The report typed on A4 sized sheets and bound in the prescribed format shall be submitted after approval by the Guide and endorsement of the Head of Department. It will be assessed for term work by the evaluation committee appointed by the Head of the Department.

The report copies must be duly signed by the guide and Head of department (one copy for institute, one copy for guide and one copy for the candidate for certification). Attendance of all students for all seminars is compulsory.
PROGRESS SEMINAR

Exam Scheme:
Practical’s – 04 hours/week. Term-work – 50 marks

Progress Seminar shall be based on topic of the Dissertation Work. It may include literature review, required theoretical input, study and comparison of various approaches for the proposed dissertation work. The candidate shall prepare a report of about 25 pages. The report typed on A4 sized sheets and bound in the prescribed format shall be submitted after approval by the Guide and endorsement of the Head of Department. It will be assessed for term work by the evaluation committee appointed by the Head of the Department.

The report copies must be duly signed by the guide and Head of department (one copy for institute, one copy for guide and one copy for the candidate for certification). Attendance of all students for all seminars is compulsory

PROJECT STAGE - II

Exam Scheme:
Practical’s – 18 hours/week. Term-work – 100 marks

The candidate shall submit the detailed report as per the synopsis approved by the evaluation committee, of the dissertation work in the prescribed format after approval by the Guide and endorsement by the Head of the Department. It will be assessed for term work by the evaluation committee appointed by the Head of the Department, for completion of the proposed work.

Note: - The evaluation committee shall consist of the Guide, one senior expert faculty member and the Head of the Department or his/her representative.