	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY	, LONERE	
	Winter Examination – 2022		
	Course: B. Tech.Branch :Mechanical EngineeringSemester : V		
	Subject Code & Name: BTMC 501 & Heat Transfer		
	Max Marks: 60 Date: 28/01/2023 Dura	tion: 3 Hr.	
	 Instructions to the Students: 1. All the questions are compulsory. 2. The level of question/expected answer as per OBE or the Course Outcombined the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. 		Maria
0.1	Coluce A nu True of the following	(Level/CO)	Marks
Q.1	Solve Any Two of the following.	(12)(001)	12
A)	Air at 20 °C blows over a 50 cm x 75 cm hot plate at 250 °C. The film heat	(L3/CO1)	6
	transfer coefficient is 25 W/m ² .K. 300 W is lost from the plate surface by		
	radiation. Calculate heat transfer rate and other side plate temperature.		
	Thermal conductivity of the plate material is 43 W/m .K. The plate is 2 cm		
	thick.		
B)	What is thermal conductivity? List the factors affecting the thermal	(L1/CO2)	6
	conductivity.		
C)	An insulating powder is densely packed in the annular space between two	(L3/CO1)	6
	concentric spheres with radii 75 mm and 50 mm. The inner sphere is		
	uniformly heated with electric power input of 30 W. Steady state temp		
	attained by the inner sphere is 120 °C and that by outer surface is 30 °C.		
	Neglecting the thermal resistance offered by the spheres: a) Draw analogous		
	electrical cct diagram b) Calculate thermal conductivity of the powder		
	Coluce A way True of the following		10
Q.2	Solve Any Two of the following.		12
A)	Derive an equation to find heat dissipation from an infinitely long-fin.	(L2/CO3)	6
B)	Explain in brief, initial and boundary conditions.	(L1/CO2)	6
C)	Derive general heat conduction equation for Cartesian coordinate system.	(L1/CO1)	6
0.3	Solve Any Two of the following.		12
Q. 3		(11/001)	
A)	Write a note on a) Forced Convection b) Free Convection c) Radiation.	(L1/CO1)	6
B)	A hot rectangular plate 5 cm X 3 cm maintained at 200 °C is exposed to still	(L3/CO4)	6
	air at 30 °C. Calculate percentage increase in convective heat transfer rate if		
	smaller side of the plate is held vertical than the bigger side. Neglect ITG of the thickness. Use Correlation $N_{\rm W}=0.50$ (Cr Pr) ^{0,25}		
	the thickness. Use Correlation Nu=0.59 (Gr.Pr) ^{0.25}		

	Air properties at 115 °C: density = 0.91 kg/m ³ ; C_p =1.009 kJ/kg K;		
	μ =22.65x10 ⁻⁶ N s/m ² ; k=0.0331 W/m K.		
C)	Water flows at 360 kg/hr. through a metallic tube of 10 mm diameter and 3	(L3/CO4)	6
	m length. It enters the tube at 25 °C. Outer surface of the tube is maintained		
	at a constant temp of 100 °C. Calculate the exit temp of the water.		
	Properties of water:		
	μ =5.62x10 ⁻⁴ kg/m s; C _p =4174 J/kg K; k=0.664W/m K.		
	Use the following correlation:		
	$N_u = 0.023 Re^{0.8} Pr^{0.4}$ for turbulent flow		
	N _u =3.66 for laminar flow		
Q.4	Solve Any Two of the following.		12
A)	Derive the expression for LMTD method for an analysis of parallel flow	(L2/CO5)	6
,	heat exchanger.		
B)	Write a short note on Overall Heat Transfer Coefficient for plate heat	(L1/CO5)	6
	exchanger.		
C)	A double pipe parallel flow heat exchanger use oil ($C_p = 1.88 \text{ kJ/kg.K}$) at an	(L3/CO5)	6
- ,	initial temperature of 205°C to heat water, flowing at 225 kg/hr. from 16°C		
	to 44°C. The oil flow rate is 270 kg/hr.		
	a) What is the heat transfer area required for an overall heat transfer		
	coefficient of 340 W/m ² .K.		
	b) Determine the number of transfer unit (NTU).		
	c) Calculate the effectiveness of the heat exchanger.		
Q. 5	Solve Any Two of the following.		12
Q. 3 A)	Determine the view factors F12 and F21 for the following geometries:	(L3/CO6)	<u> </u>
A)	Determine the view factors F12 and F21 for the following geometries.	(L3/C00)	U
	$L = D$ A_1 A_1		
	$ \begin{array}{c} \bullet \\ \bullet $		
	A_2 A_3 A_3		
	1 2 3		
	1) Sphere of diameter D inside a subject how of length $I = D$		
	 Sphere of diameter D inside a cubical box of length L = D. Diagonal partition within a long square dust. 3) End and side of a sireular. 		
	2) Diagonal partition within a long square duct. 3) End and side of a circular		

	tube of equal length and diameter, $L = D$.		
B)	State various shape factor relations (algebra) in radiation heat transfer.	(L1/CO6)	6
C)	Find out heat transfer rate due to radiation between two infinitely long	(L2/CO6)	6
	parallel planes. One plane has emissivity of 0.4 and is maintained at 200 $^{\circ}$ C.		
	Other plane has emissivity of 0.2 and is maintained at 30 °C. If a radiation		
	shield (ϵ =0.5) is introduced between the two planes, find percentage		
	reduction in heat transfer rate and steady state temp of the shield.		
	*** End ***		

The grid and the borders of the table will be hidden before final printing.