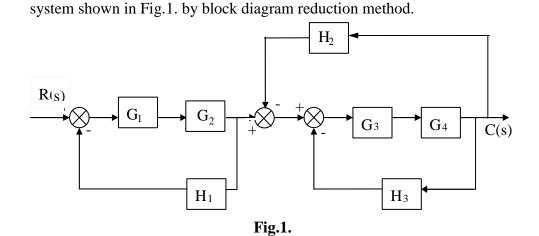
DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Winter Examination – 2022

Course: B. Tech. Branch: Mechanical Engg./Mechanical Engg. (Sandwich) Semester: 7th

Subject Code & Name: BTMEC701 Mechatronics

Max Marks: 60 Date: 27.01.2023 Duration: 3 Hr.


Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

		(Level/CO)	Marks
Q. 1	Solve Any Two of the following.		12
A)	Define Mechatronics with its merits and demerits. Brief in detail any one of in-	CO1	6
	dustrial application of Mechatronics.		
B)	Explain briefly any two of the following transducers:	CO1	6
	a. Linear-variable-differential transformer (LVDT)		
	b. Optical Encoder		
	c. Strain Gauges		
C)	Explain Analog to Digital Conversion and Describe any one method of analog-	CO2	6
	to-digital conversion with neat block diagram.		
Q.2	Solve Any Two of the following.		12
A)	What is the need for signal conditioning? Explain the steps involved in signal	CO2	6
,	conditioning.		
B)	Explain with neat diagram DC Motor with its industrial applications in	CO4	6
	Mechatronic domain.		
~		~~.	_

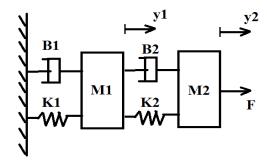
CO4

6

Define Transfer Function and Determine the transfer function C(s) / R(s) of the

Q. 3 Solve Any Two of the following. A) Explain pneumatic sequencing circuit diagram for 2 cylinders with Cascade method.

- B) Explain the different types of directional control valves with neat sketches.
 CO3 6
 C) What is a "Microprocessor"? Explain briefly 8085 microprocessor with the help of a block diagram and also uses of microprocessors?
 Q.4 Solve Any Two of the following.
 12
 - and Disadvantages over Open Loop Control System.


 B) Write the differential equations governing the mechanical translational system

 CO5 6

CO₃

6

B) Write the differential equations governing the mechanical translational system
as shown in figure and determine the transfer function.

Explain Closed Loop Control System with block Diagram. Describe advantages

A)

- C) Explain with block Diagram Programmable Logic Controller (PLC). Write any
 CO4 one industrial application using PLC Programming.
- Q. 5 Solve Any Two of the following.
 - A) Explain different control actions used in Closed Loop Control System (PID, PI,
 PD) and write PID Controllers in brief with advantages.
 - B) Explain the various Force Sensors with industrial applications. CO1 6
 - C) What do you mean by bode plot? Sketch the bode plot for the following transfer function and determine the phase margin & gain margin. $G(S) = \frac{20}{s(1+3s)(1+4s)}$

*** End ***