DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular/Supplementary Winter Examination – 2024

Course: B. Tech. Branch: Mechanical Engineering/Mechanical Engineering(Sandwich)/Mechanical and Automation

Subject Code & Name: Fluid Mechanics (BTMC302) Semester:III Max Marks: 60 Date:07/02/2024 Duration: 3 Hr.

Instructions to the Students:

- 1. Each question carries 12 marks.
- 2. Question No. 1 will be compulsory and include objective-type questions.
- 3. Candidates are required to attempt any four questions from Question No. 2 to Question No. 6.
- 4. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 5
- 5. Use of non-programmable scientific calculators is allowed.

6. Assume suitable data wherever necessary and mention it clearly.						
					(Level/CO)	Marks
Q. 1	Objective type questions. (Compulsory Question)				12	
1	The resultant of hydrostatic force acts through a point known as				Understanding/1	1
	a. Centre of	b. Centre of	c. Centre of	d. None of the		
	buoyancy	gravity	Pressure	above		
2	For a floating body, if metacenter is above the centre of gravity, the equilibrium is called			Understanding/1	1	
	a. Stable	b. Neutral	c. Unstable	d. None of the above	780	
3	Surface tension is caused by				Understanding/1	1
	a. Viscosity	b. Gravitational forces	c. Cohesion between fluid molecules	d. Temperature gradients	4)	
4	Velocity components in 'x' and 'y' direction in terms of velocity potential (ϕ) are			Understanding/2	1	
	a.	b.	C.	d.		
	$\mathbf{v} = -\frac{\partial \phi}{\partial x}, v = \frac{\partial \phi}{\partial y}$	$u = -\frac{\partial \phi}{\partial y}, v = -\frac{\partial \phi}{\partial x}$	$u = \frac{\partial \phi}{\partial y}, v = \frac{\partial \phi}{\partial x}$	$u = -\frac{\partial \phi}{\partial x}, v = -\frac{\partial \phi}{\partial y}$	149	
5	In the Lagrangian method, fluid motion is studied by,				Understanding/2	1
	a. Observing fixed points in space	b. Tracking individual fluid particles	c. Measuring fluid velocity at specific \(\omega \)	d. Analyzing streamlines	5103	
	Space	particles	locations		4,	
6	Moody's diagram is used to determine			Understanding/3	1	
	a. Velocity of	b. Friction factor	c. Reynolds	d. Pressure drop		
	fluid in a pipe	for flow in a pipe	number of the flow	across a valve		
7	The velocity distribution across a section of two fixed parallel Understanding/3				1	

	plates(Separated by distance 'B')having viscous flow is given by,					
	a.	b.	C.	d.		
	$u = \frac{1}{2\mu} \left(-\frac{\partial p}{\partial x} \right) \times$	$u = \frac{1}{2\mu} \left(\frac{\partial p}{\partial x} \right) \times$	$u = -\frac{1}{2\mu} \left(\frac{\partial p}{\partial x} \right) \times$	$u = -\frac{1}{2\mu} \left(\frac{\partial p}{\partial x} \right) \times$		
	$\left(B^2-y^2\right)$	(y-By)	$(By-y^2)$	$\left(B-y^2\right)$		
8	For laminar flow	between two fixed	parallel plates, the	relation between	Understanding/3	1
	the maximum ve	144				
	$v_{\text{max}} = \frac{1}{2} v_{avg}$	b. $v_{\text{max}} = \frac{3}{2}v_{avg}$	$v_{\text{max}} = 2v_{avg}$	d. $v_{\text{max}} = 2.5 v_{\text{avg}}$	510344	
9	Boundary layer separation takes place if,				Understanding/3	1
	a. Pressure gradient is positive	b. Pressure gradient is negative	c. Pressure gradient is zero	d. None of the above		
10	Drag is defined as the force exerted by flowing fluid on a solid body				Understanding/3	1
	a. perpendicular to the direction of flow	b. in the direction of flow	c. at an angle 45° with the direction of flow	d. None of the above	Understanding/3	
11	If in physical phenomenon is defined by a six variables and three				Understanding/3	1
	fundamental dimensions, how many (π) terms exist as per Buckingham- π theorem.			51		
	a. 4	b. 6	c. 3	d. 2		
12	The ratio of visco	us force to the iner	tia force is known	as,	Understanding/3	1
	a. Euler	b. Froude	c. Mach	d. Reynold		
	Number	Number	Number	Number		
	6	I	6	ı	19	
Q. 2	Solve the following.				7	12
A)	Define the following terms				Understanding/1	6
	Viscosity, hydrostatic law, centre of buoyancy, total pressure				10	
В)	Calculate the capillary rise and depression 'h', if a glass tube 0.3 mm in			Apply/5	6	
	diameter is im					
	respectively. At a temperature 20°C, the surface tension of water and					
	mercury in contact with water is 0.07 N/m and 0.37 N/m respectively.					
	Take angle of contact $\theta = 0^{\circ}$ for water and 125° for mercury.					

Q.3	Solve the following.		12
A)	Explain in detail any two of the following	Understanding/2	6
	Steady and Unsteady flow, compressible and incompressible flow,		
	stream function and flow net.		
В)	Write a short note on a pitot tube and derive the equation for a velocity	Apply/4	6
	measurement by using a pitot tube.	7	
	50	33.	
Q. 4	Solve Any Two of the following.	9	12
A)	Explain in detail the major and minor losses in the case of flow through	Understanding/3	6
	pipes.		
В)	For Laminar flow of an oil having dynamic viscosity μ = 1.766 Pa.s in a 0.3	Apply/5	6
	m diameter pipe, the velocity distribution is parabolic with a maximum		
	point velocity of 3 m/s at the centre of the pipe. Calculate the shearing		
	stresses at the pipe wall.		
C)	Obtain the condition for maximum efficiency in transmission of power	Apply/4	6
	through a pipeline?	44	
	E 0	03	
Q.5	Solve Any Two of the following.	10	12
A)	Explain the following terms	Understanding/3	6
	Lift, Drag, Boundary layer thickness, Magnus effect		
В)	Discuss the various methods of controlling the boundary layer.	Understanding/3	6
C)	Explain the cases of drag force on a flat plate held parallel and	Understanding/3	6
	perpendicular to the flow.		
	6	0	
Q. 6	Solve Any Two of the following.	7	12
A)	List the different dimensionless numbers and define any one	Understanding/3	6
	dimensionless number and derive it.	00	
В)	Write the steps in the Buckingham- π theorem method of dimension	Understanding/3	6
	analysis.		
C)	A horizontal venturimeter with inlet and throat diameters 25 cm and 15	Apply/5	6
	cm respectively is used to measure the flow of the oil having specific		
	gravity 0.9. The reading of differential manometer connected to the inlet		

	and the throat is 25 cm of mercury. Determine the rate of flow of oil .Take Cd=0.97.		
	*** End ***		
51034449	51034449	51034449	
51034449	51034449	51034449	
51034449	51034449	51034449	