DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular/Supplementary Winter Examination – 2024

Course: Second Year B. Tech (Sem-III) Branch: Civil Engineering Semester: III

Subject Code & Name: BTCVC304 Hydraulics-I

Max Marks: 60 Date: 12/02/2025 Duration: 3 Hr.

Instructions to the Students:

- **1.** Each question carries 12 marks.
- 2. Question No. 1 will be compulsory and include objective-type questions.
- 3. Candidates are required to attempt any four questions from Question No. 2 to Question No. 6.
- 4. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 5. Use of non-programmable scientific calculators is allowed.
- 6. Assume suitable data wherever necessary and mention it clearly.

					(Level/CO)	Marks
Q. 1	Objective type qu		12			
1	Which property of	BL2/CO2	1			
	a) Specific	b) Density	c) Specific weight	d) Compressibility		
C	gravity		8		3	
2 7	The phenomenon called	BL2/CO 2	1			
0	a) Capillarity	b) Adhesion	c) Cohesion	d) Buoyancy	34	
3	Which fluid prope	BL2/CO 2	1			
Ľ	a) Viscosity	2				
4	The buoyant force	ed object?	BL2/CO 2	1		
	a) Center of	b) Center of	c) Metacenter	d) Any point on the		
	gravity	buoyancy		surface		
5	Which of the follo	BL2/CO 2	1			
	a) Steady flow	b) Rotational flow	c) Linear flow	d) Laminar flow		
6	The continuity equ	BL2/CO 2	1			
	a) Conservation	b) Conservation	c) Conservation	d) Conservation of		
C	of energy	of mass	of momentum	velocity	က	
7 4	In fully developed	BL2/CO3	1			
1	a) Linear	b) Uniform	c) Parabolic	d) Exponential	7	
8 C	Which of the follo	is?	BL2/CO 2	1		
	a) Rayleigh's	b)Froude's	c) Euler's method	d) Bernoulli's	0	
	method	method	10	method	10	
9	The Bernoulli equ	BL2/CO3	1			
	a) Compressible	b) Steady and inviscid flow	c) Steady and compressible flow	d) Viscous and turbulent flow		
10	and viscous flow	DI 2/CO 2	1			
10	The primary funct	BL2/CO 2	1			
	a) Pressure difference	b) Flow velocity	c) Fluid density	d) Fluid viscosity		
11		ids is an example o	 of a Newtonian fluid?)	BL2/CO 2	1
			-			

	a) Blood	b) Paint	c) Water	d) Toothpaste				
12	What is the unit o	f surface tension i	n the SI system?		BL2/CO2	1		
	a) N/m²	b) N/m	c) Pa	d) kg/m				
			•					
Q. 2	Solve the following		12					
A)	Define the term i	BL2/CO2	6					
B) L	Describe the capillary rise.	BL2/CO2	6					
0	1	34						
Q.3	Solve the following	Ö	12					
A) [The right limb of	f a simple U – tul	oe ma no meter co	ntaining mercury is open	BL3/CO1	6		
11)0	to the atmosphere of sp.gr.0.9 is f mercury in the i difference of mer		v					
B)	Derive an expres the liquid.	BL3/CO2	6					
Q. 4	Solve Any Two o	of the following.				12		
A) [Derive Bernoulli	BL3/CO2	6					
B) =	What is a Ventu Venturimeter.	BL2/CO1	6					
C) C	A horizontal vent respectively is us manometer connect the rate of flow. T	BL4/CO3	6					
Q.5	Solve Any Two o		12					
A)	Derive the veloci	BL2/CO3	6					
B)	Find the head los m, through which formula ii) Chezy	BL3/CO3	6					
C) L	Derive an express	BL3/CO3	6					
_		4						
Q. 6	Solve Any Two o	of the following.			37	12		
A) T	What are the me method.	thods of dimension	onal analysis? Ex	plain in detail Rayleighs	BL2/CO3	6		
B)	Explain with neat	BL3/CO4	6					
C)	Explain the differex examples.	BL4/CO4	6					
	*** End ***							