DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE Regular/Supplementary Winter Examination – 2024											
Course: B. Tech		Branch: Common to all branches			Semester: III						
Subject Code & Name: Engineering Mathematics - III (BTBS301/BTES301/BTLOG301)											
Max Marks: 60		Da	Duration: 3 Hr.								
 Instructions to the Students: Each question carries 12 marks. Question No. 1 will be compulsory and include objective-type questions. Candidates are required to attempt any four questions from Question No. 2 to Question No. 6. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 											
	61(10		(Level/CO)	Marks					
Q. 1	Objective type questions.	Ц)	12								
1	If $L{f(t)} = \frac{e^{-as}}{s^3}$ then $L{f(3)}$		Understand CO1	1							
	a. $\frac{e^{-s}}{\left(\frac{s}{a}\right)^3}$	b. $\frac{e^{-s}}{\left(\frac{s}{3}\right)^3}$	$c. \frac{27 e^{\frac{-as}{3}}}{s^3}$	d. None							
2	Laplace transform of the fund	-	Understand CO1	1							
	a. $\frac{s+3}{s^2+16}$	b. $\frac{s+3}{s^2+3}$	C. $\frac{s+3}{s^2+6s+25}$	d. None							
3	3 Laplace transform of the function $f(t) = t \sin hat$ is,				Understand CO1	1					
	a. $\frac{2as}{(s^2-a^2)^2}$	b. $\frac{2s}{(s^2 - a^2)^2}$	$c \cdot \frac{2as}{s^2 - a^2}$	d. None	947						
4	Inverse Laplace transform of	·	Understand CO2	1							
	a. $e^{-2t} \sin 3t$	b. 5 e ^{-2t} sin 3t	$c_{t}e^{-t}\sin 3t$	d. None	21						
5	Inverse Laplace transform of		Understand CO2	1							
	a. $e^{-4t} \frac{1}{\sqrt{\pi t}}$	b. $e^{-t} \frac{1}{\sqrt{\pi t}}$	c. $e^{-4t} \frac{1}{\sqrt{t}}$	d. None							
6	The inverse Laplace transform	·	Understand CO2	1							
	a. ¹ / ₉ sin3t	b. $\frac{1}{3}sin3t$	c. <i>sin3t</i>	d. None							
7	The Fourier cosine transform	22		Understand CO3	1						
	a. $\frac{s}{s^2+1}$	b. $\frac{1}{s^2+1}$	5	d. None	394						
8	The Fourier sine transform of		Understand CO3	1							
	a. $\frac{a}{a^2+s^2}$	b. $\frac{a}{a^2-s^2}$	$\frac{s}{a^2+s^2}$	d. None	LO LO						
9	The partial differential equati	Understand CO4	1								
	a. $z = xp + yq - pq$	b. $z = xp + yq + pq$	c. $z = xp - yq - pq$	d. None							
10	The Lagrange's linear partial a $Pn - Qa = R$	Understand C04	1								
	m r p q q - n	$\int \frac{\partial f(x,y)}{\partial y} = \frac{\partial f(y,y)}{\partial y} = 0$	$\int \frac{\partial f(x)}{\partial t} = \frac{\partial f(x)}{\partial t} = \frac{\partial f(x)}{\partial t}$	a. 10000							

11	If $f(Z) = u + iv$ in Polar fo	Understand CO5	1			
	a. $\frac{\partial v}{\partial \theta}$	b. $r \frac{\partial v}{\partial \theta}$	c. $\frac{1}{r} \frac{\partial v}{\partial \theta}$	d. None		
12	If $f(z)$ is an analytic func	Understand CO5	1			
	a. constant function	b. harmonic function	c. Orthogonal	d. None		
Q. 2	Solve the following.		_		_	12
A)	Find the Laplace Transfor	Apply/CO1	6			
B)	Find the Laplace transform	Apply/CO1	6			
Q.3	Solve the following.	21	12			
A)	Using Partial Fraction met	Apply/CO2	6			
B)	Solve $\frac{dy}{dt} + 2y = e^{-3t}$, y(Apply/CO2	6			
Q. 4	Solve any TWO of the fo		12			
A)	Find the Fourier transform	Apply/CO3	6			
B)	Find the Fourier cosine transform of $\phi(x) = \frac{x}{1+x^2}$	Apply/CO3	6			
C)	Using Parseval's identity,	Apply/CO3	6			
Q.5	Solve any TWO of the fo		12			
A)	Partial differential equatio	Understand CO4	6			
B)	Solve $p(tanx) + q(tanx)$	Apply /CO4	6			
C)	Use the method of separat	Apply /CO4	6			
Q. 6	Solve any TWO of the fo	77	12			
A)	Find the analytic function	Apply/CO5	6			
B)	Show that function $v = $ conjugate function.	<i>sinhx cosy</i> is harmonic	function. Also fin	d its harmonic	Remember CO5	6
C)	Apply Cauchy's integral F	Apply/CO5	6			
		*****End****	**			