DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE								
Regular/Supplementary Winter Examination – 2024								
Course: B.Tech Branch : Mechanical Engineering and Allied								
Subject Code & Name: (BTMC501) Heat Transfer Semester					er: V			
Marks: 60 Date:06/02/2025 Duration			n:3 Hr.					
 Instructions to the Students: 1. Each question carries 12 marks. 2. Question No. 1 will be compulsory and include objective-type questions. 3. Candidates are required to attempt any four questions from Question No. 2 to Question No. 6. 4. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 								
6. Assume suitable data wherever necessary and mention it clearly.								
					(Level	Ma	ark	
					/CO)		S	
Q. 1	Objective type q	uestions. (Compul	sory Question)				12	
1	Which of the follo	owing is true abou	t Fourier's law of h	eat conduction?			1	
- S	a It describes	b. It is only	c. It is used	d. It applies to heat	CO1	5		
67	the rate of heat	applicable to	only for non-	transfer by	(0		
03	flow through a	fluids.	steady-state	convection.		03		
10	material.		conditions.			10		
2	In which of the following situations would heat conduction not occur?				CO1		1	
	a. Between two	b. Between a	c. Between two	d. Between two				
	solid bodies	solid and a	different	liquids in a vacuum.				
	placed in cold	liquid placed in	phases of					
	water	hot water.	matter.					
3	Which factor determines the effectiveness of insulation?				CO2		1	
ς Υ	a. Temperature	b. Material	c. Thermal	d. All of the above		5		
367	difference	thickness.	conductivity			367		
4	In lumped heat transfer analysis, the temperature of an object changes				CO2	2	1	
Ω	with time according to:					Ω		
	a. Newton's	b. Fourier's Law	c. Stefan-	d. Carnot's Law.				
	Law of Cooling.		Boltzmann Law.					
5	In the case of a fin, the temperature distribution along its length is:			CO3		1		
	a. Linear	b. Exponential	c. Parabolic	d. Constant				
L		1	1	1		1		

6	In a finned surface, the heat transfer rate increases with:				CO3		1
	a. Increasing	b. Decreasing	c. Increasing	d. Decreasing the			
	the thickness of	the surface	the convective	length of the fin.			
	the fin.	area.	heat transfer				
			coefficient.				
7	For a fin with a h	igh thermal conduc	ctivity, the fin effi	ciency is generally:	CO3	5	1
220	a. Low	b. High	c. Zero	d. Variable		270	
8	Which number ch	Which number characterizes the flow regime in boundary layers?				35	1
10	a. Prandtl	b. Reynolds	c. Nusselt	d. Froude number			
LΩ	number	number	number			Ω	
9	In a heat exchanger, NTU stands for:				CO5		1
	a. Net Transfer	b. Number of	c. New Thermal	d. None of the			
	Units	Transfer Units	Units	above			
10	A heat exchanger	r operates in parall	el flow mode, and	the temperature	CO5		1
31	difference between the fluids is given by the logarithmic mean					31	
67	temperature difference (LMTD). If the fluids experience significant					0 /	
03	temperature cha	nge across the hea	t exchanger, how	can the effectiveness		03	
51(of the heat excha	anger be improved	? +				
1	a. By reducing	b. By increasing	c. By using a	d. By decreasing the			
	the flow	the flow rate of	counter flow	temperature			
	velocity of one	the hotter fluid.	heat	difference between			
	of the fluids.		exchanger.	the two fluids.			
11	The Stefan-Boltzr	mann Law states th	hat the radiative h	eat flux from a black	CO6		1
_	body is proportional to:						
-62	a. T ³	b. T ²	c. T €	d. T ¹	(2	
€ E	The emissivity (e	\epsilone) of a surf	ace ranges betwe	en:	CO6	367	1
00	a. 0 and 1	b. 0 and ∞	c1 and 1	d. 0 and 100		0.5	
Q. 2	Solve the followi	ng.	51			LS	12
A)	Derive an equation for heat transfer rate through a hollow cylinder by			CO1		6	
	applying Fourier's Law of Heat Conduction. The hollow cylinder has a						
	length, L, inner radius as 'ri' and outer radius as 'ro', inner and outer wall						
	temperatures as Ti, and To. Thermal conductivity is represented as 'k'.						

B)	The inner surface of furnace wall is at 500 °C and outer surface is at 40 °C.	CO1		6
	Calculate the heat loss per m^2 area of the wall. If the thermal conductivity			
	of the brick is 2.5 W/m °C and wall thickness is 150 mm.			
Q.3	Solve the following.			12
A)	Write a short note on critical radius of insulation. Derive an equation for		12	6
673	the critical radius of insulation for a cylinder.		./9	
B	An egg with a mean diameter of 30 mm is taken from a refrigerator at 5oC	CO2).3(6
	and heated in a pot using boiling water at a tmospheric pressure. What will			
LO.	be the temperature of egg after 5 minutes? Use following properties of		Ω	
	egg: Density = 1000 kg/m3, Specific heat = 2 kJ/kg.K, thermal conductivity			
	= 10 W/m.K, Convective heat transfer coefficient = 40 W/m ² K . Check the			
	validity of lumped heat capacity approach.			
Q. 4	Solve Any Two of the following.			12
A)	Explain the concept of hydrodynamic and thermal boundary layers with	CO3	Σ	6
	reference to flow over a flat heated plate. Sketch laminar and turbulent			
)3(boundary layers for flow over a flat plate. Also, show velocity profiles in).3(
10	the two regions: a) at the entrance b) in the laminar region. Assume			
	uniform velocity profile on the upstream side of the plate.		(\mathcal{O})	
B)	Explain the Role of the Nusselt Number in Forced Convection and How It is	CO4		6
	Related to the Heat Transfer Coefficient.			
C)	What is the Effect of Surface Roughness on Heat Transfer in Forced	CO4		6
	Convection?			
Q.5	Solve Any Two of the following.	(3	12
A)	In a double-pipe counter flow heat exchanger, oil flowing at 195 kg/min	CO5	0	6
03	with a specific heat of 4200 J/kg·K is cooled from 90°C to 40°C by 140		2.0	
	kg/min of cooling water initially at 25°C. The overall heat transfer coefficient is given as 200 W/m^2 .K and the specific heat of the water is			
L()	6200 J/kg·K. Determine the following:		0	
	1. The Logarithmic Mean Temperature Difference (LMTD).			
	2. The required surface area of the heat exchanger.			

51036 9 3	Explain & Sketch basic temperature distribution diagrams (temperature variation along the length) for the following heat exchanger configurations: a) Parallel Flow Heat Exchanger b) Counter flow Heat Exchanger	CO5	510367	6
Q. 6	Solve Any Two of the following.			12
A)	Explain the Concept of Radiation Heat Transfer. How Does It Differ from			6
D)	Conduction and Convection:	<u> </u>		
- - - - - - - - - - - - - - - - - - -	Minimize Heat Transfer in High-Temperature Applications?			O
0367	State and Explain Planck's Law of Radiation. How Does It Relate to the CC Spectral Distribution of Radiation Emitted by a Body?			6
	*** End ***		Ì	

##