DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE							
Regular/Supplementary Winter Examination – 2024							
Course	Course: B.Tech Branch : Mechanical Engineering/Mechanical Engineering Sandwich						
Semest	Semester : V Subject Code & Name: BTMC503 Theory of Machines - II						
Max M	arks: 60		Date:11/02/20	25	Duration: 3 Hr.		
Instructions to the Students: 1. Each question carries 12 marks. 2. Question No. 1 will be compulsory and include objective-type questions. 3. Candidates are required to attempt any four questions from Question No. 2 to Question No. 4. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 5. Use of non-programmable scientific calculators is allowed						1777 10. 6.	
6. A	Assume suitable de	ata wherever nece	essary and mention	n it clearly.		Marks	
0.1	Objective type a	unstions (Compu	lean Question)			12	
Q. 1		ie of two pullow		n onen helt er	Lindorstand/	12	
L 1	The velocity rat	io of two pulley:	s connected by a	an open beit of	Onderstand		
	crossed beit is	· · · ·				-	
444	a. directly proportional to	b. inversely proportional to	c. directly propertional to	d. inversely proportional to		444	
C.O	their diameters	their diameters	the square of	the square of		20	
LC LC)		their dia meters	their diameters		0	
2	The velocity of th	ne belt for maximu	Im power is		Analyzing /	1	
	where m = Mass	of the belt in kg p	er metre length.		CO1		
	a.	b.	С.	d.			
	$\sqrt{\frac{T}{3m}}$	$\sqrt{\frac{T}{4m}}$	$\sqrt{\frac{T}{5m}}$	$\sqrt{\frac{T}{6m}}$			
3	3 The type of gears used to connect two non-parallel non-intersecting				Understand/		
14,	shafts are		44		CO2	141	
32	a. spur gears	b. helical gears	c. spiral gears	d. none of		72:	
10			10	these			
40	The size of a gear is usually specified by			Understand/	<mark>1</mark> ۲		
	a. pressure	b. circular pitch	c. diametral	d. pitch circle	CO2		
	angle		pitch	diameter			
5	5 Which is the incorrect relationship of gears?				Analyzing /	1	
					CO2		

	a. Circular	b. Module =	c. Dedendum =	d. Addendum =			
	pitch ×	P.C.D/No.of	1.157 module	2.157 module			
	Diametral pitch	teeth					
	= π						
6	The train value o	f a gear train is	I		Understand/		1
1	a. equal to	b. reciprocal of	c. always	d. always less	CO2		
14,	velocity ratio	velocity ratio	greater than	than unity		141	
32	of a gear train	of a gear train	unity			72:(
Ţ	The maximum flu	uctuation of energ	y is the		Understand/	٦L	1
	a. sum of	b. difference	c. ratio of the	d. ratio of the	CO3	Ω	
	maximum and	between the	maximum	mean resisting			
	minimum	maximum and	energy and	torque to the			
	energies	minimum	minimum	work done per			
		energies	energy	cycle			
8	The maximum flu	uctuation of energ	gy in a flywheel is e	equal to	Analyzing /		1
41	a. Ι .ω(ω ₁ –ω ₂)	b. Ι .ω² .CS	c. 2E .CS	d. all of these	CO3 (41	
9	A disc is spinning	, with an angular v	velocity w rad/s ab	out the axis of	Analyzing /	44	1
33,	spin. The couple applied to the disc causing precession will be				CO4	<u>)</u> .3	
510	a.	b.	c. 10	d.		10	
Ц.	$\frac{1}{2}I\omega^2$		1	Loco			
	2	$I.\omega^2$	$\frac{-1}{2}$	1.00.00p			
10	The rotor of a sh	ip rotates in clock	wise direction whe	en viewed from	Understand/		1
	the stern and the	e ship takes a left t	turn. The effect of	the gyroscopic	CO4		
	couple acting on	it will be					
	a. to raise the	b. to lower the	c. to raise the	d. to lower the			
4	bow and stern	bow and stern	bow and lower	bow and raise		4	
44	-		the s ter n	the stern		44	
12	When there is a reduction in amplitude over every cycle of vibration,				Understand/	£0	1
	then the body is said to have				CO5		
	a. free	b. forced	c. damped	d. all of these			
	vibration	vibration	vibration				
12	The factor which affects the critical speed of a shaft is				Understand/		1
	a. diameter of	b. span of the	c. eccentricity	d. all of these	CO5		
	the disc	shaft					

Q. 2	Solve the following.			12
A)	Obtain an expression for the length of belt in a cross belt drive.	Analyzing /		6
		CO1		
B)	An engine, running at 150 r.p.m., drives a line shaft by means of a	Evaluating /		6
11	belt. The engine pulley is 750 mm diameter and the pulley on the	CO1		
14,	line shaft being 450 mm. A 900 mm diameter pulley on the line shaft		14	
78(drives a 150 mm diameter pulley keyed to a dynamo shaft. Find the	(72:(
10	speed of the dynamo shaft, when 1. there is no slip, and 2. there is a	-		
5	slip of 2% at each drive.		ç	
Q.3	Solve the following.			12
A)	State and prove the law of gearing. Show that involute profile	Analyzing /		6
	satisfies the conditions for correct gearing.	CO2		
B)	A pinion having 30 teeth drives a gear having 80 teeth. The profile of	Evaluating /		6
41	the gears is involute with 20° pressure angle, 12 mm module and 10	CO2 ,	41	
44	mm addendum. Find the length of path of contact, arc of contact		77	
33,	and the contact ratio.		1.3	
T	010			
Q. 4	Solve Any Two of the following.		~ /	12
A)	What do you understand by 'gear train'? Discuss the various types of	Understand/		6
	gear trains.	CO2		
B)	Explain the terms 'fluctuation of energy' and 'fluctuation of speed' as	Analyzing /		6
	applied to flywheels.	CO3		
C)	Two shafts A and B are co-axial. A gear C (50 teeth) is rigidly	Evaluating /	_	6
- 7	mounted on shaft A. A compound gear D-E gears with C and an	CO2 •	- 17-	
77	internal gear G. D has 20 teeth and gears with C and E has 35 teeth		44	
03	and gears with an internal gear G. The gear G is fixed and is		0.3	
1(concentric with the shaft axis. The compound gear D-E is mounted			
1	on a pin which projects from an arm keyed to the shaft B. Sketch the			
	arrangement and find the number of teeth on internal gear G			
	assuming that all gears have the same module. If the shaft A rotates			
	at 110 r.p.m., find the speed of shaft B.			

Q.5	Solve Any Two of the following.			12
A)	A punching press is driven by a constant torque electric motor. The	Evaluating /		6
	press is provided with a flywheel that rotates at maximum speed of	CO3		
	225 r.p.m. The radius of gyration of the flywheel is 0.5 m. The press			
	punches 720 holes per hour; each punching operation takes 2			
	second and requires 15 kN-m of energy. Find the power of the motor		<u> </u>	
47	and the minimum mass of the flywheel if speed of the same is not to		777	
75	fall below 200 r. p. m.	(34	
B)	Describe the gyroscopic effect on an aeroplane.	Understand/		6
LC.	LO LO	CO4	S	
C)	The heavy turbine rotor of a sea vessel rotates at 1500 r.p.m.	Evaluating /		6
	clockwise looking from the stern, its mass being 750 kg. The vessel	CO4		
	pitches with an angular velocity of 1 rad/s. Determine the gyroscopic			
	couple transmitted to the hull when bow is rising, if the radius of			
	gyration for the rotor is 250 mm. Also show in what direction the			
41	couple acts on the hull?		41	
14		4	44	
Q. 6	Solve Any Two of the following.		03	12
A)	Discuss briefly with neat sketches the longitudinal, transverse and	Remember /		6
Ľ,	torsional free vibrations.	CO5	0	
B)	Explain the term 'whirling speed' or 'critical speed' of a shaft. Prove	Analyzing /		6
	that the whirling speed for a rotating shaft is the same as the	CO5		
	frequency of natural transverse vibration.			
C)	Explain the terms 'under damping, critical damping' and 'over	Understand/		6
	damping'	CO5		
4-1-	*** End ***		4	
7	4		4	
22			34	
Č	Ő		Ó	
		1		